
How to Sort by Walking on a Tree

Daniel Graf

ETH Zürich, Department of Computer Science
grafdan@ethz.ch

Abstract. Consider a graph G with n vertices. On each vertex we place
a box. These n vertices and n boxes are both numbered from 1 to n
and initially shuffled according to a permutation π ∈ Sn. We introduce
a sorting problem for a single robot: In every step, the robot can walk
along an edge of G and can carry at most one box at a time. At a vertex,
it may swap the box placed there with the box it is carrying. How many
steps does the robot need to sort all the boxes?
We present an algorithm that produces a shortest possible sorting walk
for such a robot if G is a tree. The algorithm runs in time O(n2) and
can be simplified further if G is a path. We show that for planar graphs
the problem of finding a shortest possible sorting walk is NP-complete.

Keywords: Physical Sorting, Shortest Sorting Walk, Warehouse Reor-
ganization, Robot Scheduling, Permutation Properties

1 Introduction

Motivation. Nowadays, many large warehouses are operated by robots. Such
automated storage and retrieval systems (abbreviated AS/RS) are used in in-
dustrial and retail warehouses, archives and libraries, as well as automated car
or bicycle parking systems. When it needs to rearrange the stored goods, such a
robot faces a physical sorting task. In contrast to standard sorting algorithms, it
does not have constant time access to the stored objects. It might need to travel
for a significant amount of time before fetching the object in question, and then
moving it to its desired location also takes time. We want to look at the problem
of finding the most efficient route for the robot that allows it to permute the
stored objects. Our interest in this problem arises from a bike parking system to
be built in Basel, for which bike boxes need to be rearranged according to the
expected pickup times of the customers.

Problem Description. We consider the following model throughout this paper.
Our warehouse holds n boxes. Each box is unique in its content but all the
boxes have the same dimensions and can be handled the same way. The storage
locations and aisles of the warehouse are represented by a connected graph G =
(V,E), where n = |V | and m = |E|. Every vertex v ∈ V represents a location
that can hold a single box. Every edge e = (u, v) ∈ E represents a bidirectional
aisle between two locations. We assume that our warehouse is full, meaning

that at each location there is exactly one box stored initially. The boxes and
locations are numbered from 1 to n and are initially shuffled according to some
permutation π ∈ Sn, representing that the box at vertex i should get moved to
vertex π(i). The robot is initially placed at a vertex r. In every step the robot
can move along a single edge. It can carry at most one box with it at any time.
When arriving at a vertex it can either put down the box it was traveling with
(if there is no box at this vertex), pick up the box from the current vertex (if it
arrived without carrying a box), swap the box it was carrying with the box at
this vertex (if there is one) or do nothing.

We refer to each traveled edge of the robot as a step of the sorting process.
A sequence of steps that lets the robot sort all the boxes according to π and
return to r is called a sorting walk. We measure the length of a sorting walk as
the number of edges that the robot travels along. Therefore, we assume that all
aisles are of equal length and that all of the box-handling actions (pickup, swap,
putdown) only take a negligible amount of time compared to the time spent
traveling along the edges. We are looking for the shortest sorting walk.

Example. Figure 1 shows an example of a warehouse where G is a tree consisting
of 8 vertices. It is not obvious how we can find a short walk that allows the robot
to sort these 8 boxes. We will see an efficient algorithm that produces such a
sorting walk and we will prove that this sorting walk has minimum length.

1

2 3

4 5 6

7 8

4

2

1 3

7

8

5 6

1

2 3

4 5 6

7 8

1

2 3

4 5 6

7 8

4 2

1 3

7

8

5 6

1 2 5 2 1 3 6 8 6 7 6 3 1 2 5 2 4 2 1

4 2 3 3 3 7 8 6 7 5 5 5 5 4 1 125

Fig. 1. (left) Initial state of the warehouse with storage locations as circles and boxes
as squares. The box at vertex i is labeled with its target vertex π(i). (center) The
initial state with π drawn as dashed arcs towards their target vertex instead of num-
bered boxes. (right) This shows the state of the warehouse after two steps have been
performed. First the robot brought box 4 to vertex 2. Then it took box 2 to vertex 5.
(bottom) A shortest possible sorting walk consisting of 18 steps.

Organization. Section 2 introduces some terminology and shows first lower and
upper bounds on the length of a shortest sorting walk on general graphs. We
then look for shortest walks for certain classes of graphs. Section 3 shows a
way of finding shortest sorting walks on path graphs where the robot starts

2

at one of the ends of the path. Our main result is given in Section 4, where
we efficiently construct shortest sorting walks on arbitrary trees with arbitrary
starting position. Finally, in Section 5 we show that it is NP-complete to find a
shortest sorting walk for planar graphs.

Related Work. Sorting algorithms for physical objects were studied in many dif-
ferent models before. Sorting streams of objects was studied for instance by
Knuth [8], where we can use an additional stack to buffer objects for rearrange-
ment. Similar problems were also studied in the context of sorting railway cars,
for example by Büsing et al. [1]. Most similar to our solutions is an algorithm
called cycle sort by Haddon [4] that minimizes the number of writes when sort-
ing an array by looking at the cycles of its permutation. Yamanaka et al. [10]
recently studied the process of sorting n tokens on a graph of n vertices using
as few swaps of neighboring tokens as possible. For path graphs the number of
swaps is minimized by bubble sort. They give a 2-approximation for tree graphs
by simulating cycle sort. Compared to our setting, they do not require that suc-
cessive actions are applied to nearby vertex positions. Sliding physical objects
are also studied in the context of the hardness of many different puzzle games.
We refer to Hearn [5] for an overview. An extensive overview of the research on
storage yard operation can be found in [2].

2 Notation and General Bounds

Before we look at specific types of graphs, we introduce some notation and show
some general lower and upper bounds for the length of a shortest sorting walk.

Formally, we describe the state τ of the warehouse by a triple (v, b, σ) where
v ∈ V is the current position of the robot, b ∈ {1, . . . , n}∪ {�} is the number of
the box that the robot is currently traveling with or � if it is traveling without
a box, and σ is the current mapping from vertices to boxes. If there is no box
at some vertex i, we will have σ(i) = �. At any point there will always be at
most one vertex without a box, thus at most one number will not appear in
{σ(i) | i ∈ {1, . . . , n}}. In other words: Looking at σ and b together will at all
times be a permutation of {1, . . . , n} ∪ {�}. Given the current state, the next
step s of the robot can be specified by the pair (p, b), if the robot moves to p ∈ V
with box b ∈ {1, . . . , n} ∪ {�}.

We start with τ0 = (r,�, π), so the robot is at the starting position and is not
carrying a box. Applying a step st = (p, b) to a state τt−1 = (vt−1, bt−1, σt−1)
transforms it into state τt = (vt, bt, σt) with vt = p, bt = b. σt only differs from
σt−1 if a swap was performed, so if bt−1 6= b, in which case we set σt(vt−1) = bt−1.
In order to get σ = id in the end, we let the robot put its box down whenever it
moves onto an empty location. Thus if σt−1(p) = �, we let bt = � and σt(p) = b.

Step st is valid only if (vt−1, p) ∈ E and b ∈ {bt−1, σt−1(vt−1)}, so if the
robot moved along an edge of G and carried either the same box as before or the
box that was located at the previous vertex. Thus after putting down a box at
an empty location, the robot can either immediately pick it up again or continue

3

without carrying a box. A sequence of steps S = (s1, . . . , sl) is a sorting walk of
length l, if we start with τ0, all steps are valid, and we end in τl = (r,�, id). We
are looking for the minimum l such that a sorting walk of length l exists.

We denote the set of cycles of the permutation π as C = {C1, . . . , C|C|},
where each cycle Ci is an ordered list of vertices Ci = (vi,1, . . . , vi,|Ci|) such
that π(vi,j) = vi,j+1 for all j < |Ci| and π(vi,|Ci|) = vi,1. In the example shown
in Figure 1, we have C = {(1, 4), (2), (3, 7, 5), (6, 8)}. As cycles of length one
represent boxes that are placed correctly from the beginning, we usually ignore
such trivial cycles and let C = {C ∈ C | |C| > 1} be the set of non-trivial cycles.

Let d(u, v) denote the distance (length of the shortest path) from u to v in
G. So if the robot wants to move a box from vertex u to vertex v, it needs at
least d(u, v) steps for that. By d(C) we denote the sum of distances between all
pairwise neighbors in the cycle C and by d(π) the sum of all such cycle distances
for all cycles in π, i.e., d(π) =

∑
C∈C d(C) =

∑
v∈V d(v, π(v)).

We distinguish two kinds of steps in a sorting walk: essential and non-
essential steps. A step s = (p, b) is essential if it brings box b one step closer to
its target position than it was in any of the previous states, so if d(p, b) is smaller
than ever before. We say that such a step is essential for a cycle C if b ∈ C. A
single step can be essential for at most one cycle, as at most one box is moved
in a step and each box belongs to exactly one cycle. In the example in Figure 1
for instance, the first step was essential for cycle (1, 4). Overall, 16 steps (all but
s2 and s15) were essential. This corresponds to the sum of distances of all boxes
to their targets d(π), which we formalize as follows.

Lemma 1 (Lower bound by counting essential steps). Every sorting walk
for a permutation π on a graph G has length at least d(π) =

∑
b∈{1,...,n} d(b, π(b)).

Proof. Throughout any sorting walk, there will be exactly d(b, π(b)) essential
steps that move box b. As the robot cannot move more than one box at a time,
the sum of distances between all boxes and their target positions can decrease
by at most 1 in each step. Therefore, there will be d(π) =

∑
b∈{1,...,n} d(b, π(b))

essential steps in every sorting walk and at least as many steps overall. ut

The remaining challenge is to minimize the number of non-essential steps. In
case that π consists only of a single cycle, the shortest solution is easy to find.
We just pick up the box at r and bring it to its target position π(r) in d(r, π(r))
steps. We continue with the box at π(r), bring it to π(π(r)) and so on until we
return to r and close the cycle. Therefore, by just following this cycle, the robot
can sort these boxes in d(π) steps without any non-essential steps. As it brings
one box one step closer to its target position in every step, by Lemma 1 no other
sorting walk can be shorter.

But what if there is more than one cycle? One idea could be to sort each
cycle individually one after the other. This might not give a shortest possible
sorting walk, but it might give a reasonable upper bound. So the robot picks up
the box at r, brings it to its target, swaps it there, continues with that box and
repeats this until it closes the cycle. After that, the robot moves to any box b

4

that is not placed at its correct position yet. These steps will be non-essential
as the robot does not carry a box during these steps from r to b. Once it arrives
at b, it sorts the cycle in which b is contained. In this way, it sorts cycle after
cycle and finally returns to r. The number of non-essential steps in this process
depends on the order in which the cycles are processed and which vertices get
picked to start the cycles. The following lemma shows that a linear amount of
non-essential steps will always suffice.

Lemma 2 (Upper bound from traversal). There is a sorting walk of length
at most d(π) + 2 · (n− 1) for a permutation π on a graph G.

Proof. We let the robot do a depth-first search traversal of G while not carrying
a box. Whenever we encounter a box that is not placed correctly yet, we sort its
entire cycle. As the robot returns to the same vertex at the end of the cycle we
can continue the traversal at the place where we interrupted it. Recall that G is
connected, so during the traversal we will visit each vertex at least once and at
the end all boxes will be at their target position. The number of non-essential
steps is now given by the number of steps in the traversal which is twice the
number of edges of the spanning tree produced by the traversal. ut

We can see that these sorting walks might not be optimal, for instance in
the example shown in Figure 1. Every sorting walk that sorts only one cycle at
a time will have length at least 20, while the optimal solution consists of only
18 steps.

As d(π) can grow quadratic in n, the linear gap between the upper and lower
bound might already be considered negligible. However, for the rest of this paper
we want to find sorting walks that are as short as possible.

3 Sorting on Paths

We now look at the case where G is the path graph P = (V,E). Imagine that
the vertices v1 to vn are ordered on a line from left to right and every vertex is
connected to its left and right neighbor, thus E = {{vi, vi+1} | i ∈ {1, . . . , n−1}}.
We further assume that the robot is initially placed at one of the ends of the
path, so let r = v1.

By I(C) = [l(C), r(C)], we denote the interval of P covered by the cycle C,
where l(C) = minvi∈C i and r(C) = maxvi∈C i. We say that two cycles C1 and C2

intersect if their intervals intersect. Now let I = (C, E) be the intersection graph
of the non-trivial cycles, so E = {{C1, C2} | C1, C2 ∈ C s.t. I(C1) ∩ I(C2) 6=
∅}. We then use D = {D1, . . . , D|D|} to represent the partition of C into the
connected components of this intersection graph I. Two cycles C1 and C2 are
in the same connected component Di ∈ D, if and only if there exists a sequence
of pairwise-intersecting cycles that starts with C1 and ends with C2. We let
l(D) = minC∈D l(C) and r(D) = maxC∈D r(C) be the boundary vertices of
the connected component D. We index the cycles and components from left to
right according to their leftmost vertex, so that l(Ci) < l(Cj) and l(Di) < l(Dj)
whenever i < j.

5

Theorem 1 (Shortest sorting walk on paths). The shortest sorting walk
on a path P with permutation π can be constructed in time Θ(n2) and has length

d(π) + 2 ·

l(D1)− 1 +

|D|−1∑

i=1

(l(Di+1)− r(Di))

 .

Proof. We claim that the number of non-essential steps that are needed is twice
the number of edges that are not covered by any cycle interval, and lie between
r and the rightmost box that needs to be moved.

We prove the claim by induction on the number of non-trivial cycles of π.
We already saw how we can find a minimum sorting walk if π consists of a single
cycle only. If there are several cycles but only one of them is non-trivial, so
|C| > 1 but

∣∣C
∣∣ = 1, the shortest sorting walk is also easy to find: We walk to

the right until we encounter the leftmost box of this non-trivial cycle C, then
we sort C and return to r. The number of steps is d(π) + 2 · (l(C) − 1) and is
clearly optimal. Figure 2 (left) gives an example of such a case.

Now let us look at the case where π consists of exactly two non-trivial cycles
C1 and C2. If C1 and C2 intersect, we can interleave the sorting of the two cycles
without any non-essential steps. We start sorting C1 until we first encounter a
box that belongs to C2, so until the first step (p, b) where p ∈ C2. This will
happen eventually, as we assumed that C1 and C2 intersect. We then leave box
b at position p in order to sort C2. After sorting C2, we will be back at position
p and can finish sorting C1, continuing with box b. As we will end in l(C1) and
then return to v1, we found a minimum walk of length d(π) + 2 · (l(C1) − 1).
Figure 2 (center) gives an example of such a case.

Let us assume that C1 and C2 do not intersect. This implies that there is no
box that has to go from the left of r(C1) to the right of l(C2) and vice versa. But
the robot still has to visit the vertices of C2 at some point and then get back to
the starting position. So each of the edges between the two cycles will be used
for at least two non-essential steps. We construct a sorting walk that achieves
this bound of d(π) + 2 · (l(C1)− 1 + l(C2)− r(C1)). We start by sorting C1 until
we get to r(C1). We then take the box π(r(C1)) from there and walk with it
to l(C2). From there we can sort C2 starting with box π(l(C2)). We again end
at l(C2), where we can pick up box π(r(C1)) again and take it back to position
r(C1). From there, we finish sorting C1 and return back to v1. Figure 2 (right)
gives an example of such a case.

Next, let us assume that we have three or more non-trivial cycles. We look
at these cycles from left to right and we assume that by induction we already
found a minimum sorting walk Si for sorting the boxes of the first i cycles C1

to Ci. For the next cycle Ci+1 we now distinguish two cases: If Ci+1 intersects
any cycle C∗ ∈ {C1, . . . , Ci} (which does not necessarily need to be Ci), we
can easily insert the essential sorting steps for Ci+1 into Si at the point where
Si first walks onto l(Ci+1) while sorting C∗. As we only add essential steps,
this new walk Si+1 will still be optimal if Si was optimal. We have |Si+1| =
|Si|+d(Ci+1) = |Si|+

∑
b∈Ci+1

d(b, π(b)). In the other case, Ci does not intersect

6

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

C1C1 C1C1
C2C2 C1C1 C2C2

D1D1 D1D1 D1D1 D2D2

Fig. 2. (left) An example with a single non-trivial cycle. A shortest sorting
walk S with |S| = d(π) + 2 · (l(C1) − 1) = 8 + 2 · (2 − 1) = 10 is
((2,�), (3, 5), (4, 5), (5, 5), (4, 3), (3, 3), (4, 4), (3, 2), (2, 2), (1,�)). (center) An example
with two intersecting cycles. A shortest sorting walk S with |S| = d(π) = 10
is ((2, 3), (3, 5), (4, 5), (5, 5), (4, 4), (3, 2), (2, 2), (3, 3), (2, 1), (1, 1)). (right) An example
with two non-intersecting cycles. A shortest sorting walk S with |S| = d(π)+2·(l(D2)−
r(D1)) = 4 + 2 · (4− 2) = 8 is ((2, 2), (3, 1), (4, 1), (5, 5), (4, 4), (3, 1), (2, 1), (1, 1)).

any of the previous cycles. We then know that any sorting walk uses all the edges
between maxj∈{1,...,i} r(Cj) and l(Ci+1) for at least two non-essential steps. So
if we interrupt Si after the step where it visits maxj∈{1,...,i} r(Cj) to insert non-
essential steps to l(Ci+1), essential steps to sort Ci+1 and non-essential steps to
get back to maxj∈{1,...,i} r(Cj) we get a minimum walk Si+1. This case occurs
whenever Ci+1 lies in another connected component than all the previous cycles.
So if Ci is the first cycle in some component Dj , we have |Si+1| = |Si|+d(Ci+1)+
2·(l(Dj)−r(Dj−1)), and so we get exactly the extra steps claimed in the theorem.

ut

Algorithmic Construction. The proof of Theorem 1 immediately tells us how
we can construct a minimum sorting walk efficiently. Given P and π we first
extract the cycles of π and order them according to their leftmost box, which
can easily be done in linear time. We then build our sorting walk S in the form
of a linked list of steps inductively, starting with an empty walk. While adding
cycle after cycle we keep for every vertex v of P a reference to the earliest step
of the current walk that arrives at v. We also keep track of the step smax that
reaches the rightmost vertex visited so far.

When adding a new cycle C to the walk, we check whether we stored a step
for l(C). If yes, we simply insert the steps to sort C into the walk and update
the vertex-references of all the vertices we encounter while sorting C. If l(C)
was not visited by the walk so far, we insert the necessary non-essential steps
into the walk to get from smax to l(C) and back after sorting C. In either case
we update smax if necessary. The runtime of adding a new cycle to the walk
is linear in the number of steps we add. Overall our construction runs in time
Θ(n+ |S|) ⊆ Θ(n2), so it is linear in the combined size of the input and output
and at most quadratic in the size of the warehouse.

So far, we assumed that the robot works on a path and starts at an endpoint
of that path. What if the robot starts at an inner vertex of the path? It is not
immediately clear whether its first step should go to the left or to the right then.

7

Instead of going into the details of this scenario, we now study the more general
problem of arbitrary trees with arbitrary starting positions.

4 Sorting on Trees

We now want to study the problem of sorting boxes placed on an arbitrary tree.
So let T = (V,E) be the underlying tree, let r ∈ V be the starting vertex and
let T be rooted at r. For any cycle C of π we say that it hits a vertex v if the
box initially placed on v belongs to the cycle C. We denote by V (C) the set of
vertices hit by C. We let T (C) denote the minimum subtree of T that contains
all vertices hit by C and we say C covers v for every v ∈ T (C). In Figure 1 for
example, we have T ((3, 5, 7)) = {1, 2, 3, 5, 6, 7}.

Before describing our solution, we will first derive a lower bound on the
length of any sorting walk on T . We describe how we map each sorting walk to
an auxiliary structure called cycle anchor tree that reflects how the cycles of π
are interleaved in the sorting walk. We then bound the length of the sorting walk
only knowing its cycle anchor tree. We give an explicit construction of a sorting
walk that shows that this bound is tight. In order to find an optimal solution we
first find a cycle anchor tree with the minimum possible bound and then apply
the tight construction to get a shortest possible sorting walk.

4.1 Cycle Anchor Trees

Definition. A cycle anchor tree T̃ is a directed, rooted tree that contains one
vertex ṽC for every non-trivial cycle C of π and an extra root vertex r̃. Given a
sorting walk S we construct from it a cycle anchor tree T̃ as follows: We start
with T̃ only containing r̃. We go through the essential steps in S. If step s is the
first essential step for some cycle C, we create a vertex ṽC in T̃ . To determine
the parent node of ṽC in T̃ we look for the last essential step s′ in S before s
and its corresponding cycle C ′. We now say that C is anchored at C ′ and add
an edge (ṽC′ , ṽC) to T̃ . If no such step s′ exists (which only happens for the very
first essential step in S) we use the root r̃ as the parent of ṽC .

Edge Costs. We also assign an integer cost to each edge of a cycle anchor tree.
For this we call a sorting step a down-step if the robot moves away from the
root and an up-step otherwise. The cost c for an edge between two nodes of T̃ is
now defined as follows: Let c((ṽC1 , ṽC2)) be the minimum number of down-steps
on the path from any vertex v ∈ T (C1) to any vertex w ∈ V (C2). Let us fix
one such path that minimizes the number of down-steps and let v and w be its
endpoints. This path, conceptually, consists of two parts: some up-steps towards
the root and then some down-steps away from the root. However, note that we
never walk down and then up again, as this would correspond to traversing the
same edge twice. Let a be the vertex where this path switches from up-steps to
down-steps, also known as the lowest common ancestor of v and w. We say that
a is an anchor vertex for anchoring C2 at C1. For the single edge incident to the

8

root, we have c((r̃, ṽC)) being the minimum number of down-steps on the path

from the root to any vertex v ∈ V (C). The cost c(T̃) of an entire cycle anchor

tree T̃ is simply the sum of its edge costs. Figure 3 illustrates the definitions and
gives an example of the transformation from a sorting walk to a weighted cycle
anchor tree.

r̃̃r

ṽC3
ṽC3

ṽC2
ṽC2

ṽC1
ṽC1

0

0 1

1

2 3

4 5 6

5

4

2
5

1

1

6 3

1

1

1

2 3

4 5 6

C1
C2

C3

v

a

w

r

1

2

3C1

C2

Fig. 3. (first figure on the left) The two pairs of dashed arrows symbolize boxes that
need to be swapped. A shortest path from any v ∈ T (C1) to any w ∈ V (C2) is shown
with continuous arrows, three of them being down-steps, so c((ṽC1 , ṽC2)) = 3. The
anchor vertex a is the vertex immediately before the first down step. Note that c is
not symmetric as c((ṽC2 , ṽC1)) = 2. (the three figures on the right) An example of a
sorting walk on a tree with three non-trivial cycles. The dashed arrows on the left show
the desired shuffling of the boxes. The dotted arrow in the middle shows a minimum
sorting walk of ten steps, where each step is labeled with the box it moves. On the
right, the corresponding cycle anchor tree is given. The edge from ṽC1 to ṽC3 has cost
1 as there is a down-step necessary to get from vertex 1 ∈ T (C1) to vertex 3 ∈ V (C3).
The edge (ṽC1 , ṽC2) is free as vertex 2 is both in T (C1) and V (C2).

Theorem 2 (Lower bound for trees). Any sorting walk S that sorts a per-

mutation π on a tree T and corresponds to a cycle anchor tree T̃ has length at
least d(π) + 2 · c(T̃).

Proof. We partition the steps of S into three sets: essential steps Se, non-essential
down-steps Sn,d and non-essential up-steps Sn,u. From Lemma 1 we have |Se| =
d(π). We argue that S contains at least c(T̃) many non-essential down-steps.
To do this we look at the segments of S that were relevant when we described
how we derive T̃ from S. For an edge (ṽC1

, ṽC2
) of T̃ , we look for the segment

SC1,C2 of S between the first essential step s2 of C2 and its most recent preceding
essential step s1 for some other cycle C1. What do we know about SC1,C2? First
of all, we know that s1 is essential for C1, so s1 ends at a vertex covered by C1

and SC1,C2
starts somewhere in T (C1). Next, s2 is the first essential step that

moves a box of C2. Note that some or even all of the boxes of C2 might have
been moved in non-essential steps before s2, putting them further away from
their target position. But as we are on a tree (where there is only a single path
between any pair of points), the first time a box gets moved closer to its target
position than it was originally is a move away from its initial position, which

9

means that s2 starts at a vertex hit by C2. So SC1,C2 ends somewhere in V (C2).
By definition of c(ṽC1

, ṽC2
), there are at least c(ṽC1

, ṽC2
) many down-steps in

SC1,C2
. The same holds for the initial segment Sr,C . As all these segments of the

sorting walk are disjoint, we get that |Sn,d| ≥ c(T̃).
Finally we argue that |Sn,d| = |Sn,u| to conclude the proof. Consider any

edge e of T and count all steps of S that go along e. Regardless of whether the
steps are essential or non-essential, we know that there must be equally many
up-steps and down-steps along e, as S is a closed sorting walk and T has no
cycles. So for every time we walk down along an edge, we also have to walk up
along it once. We see that this equality also holds for the essential up-steps and
down-steps along e. Along e there will be as many essential up-steps as there
are boxes in the subtree below e whose target is in the tree above e. As π is
a permutation, there are equally many boxes that are initially placed above e
and have their target in the subtree below e. So as the overall number of steps
match and the essential number of steps match, also the number of non-essential
up-steps and down-steps must be equal along e. As this holds for any edge e, it
also holds for the entire sorting walk. ut

Note that we did not say anything about where these non-essential up-steps
are on S, just that there are as many as there are non-essential down-steps.

4.2 Reconstructing a Sorting Walk

We now give a tight construction of a sorting walk of the length of this lower
bound.

Theorem 3 (Tight construction). Given T , π and cycle anchor tree T̃ , we

can find a sorting walk of length d(π) + 2 · c(T̃).

Proof. We perform a depth-first search traversal of T̃ , starting at r̃ and itera-
tively insert steps into an initially empty sorting walk S. At any point of the
traversal, S is a closed sorting walk that sorts all the visited cycles of the anchor
tree. For traversing a new edge of T̃ from ṽC to ṽC′ , we do the following: Let
v ∈ T (C) and w ∈ V (C ′) be the two vertices that have the minimum number

of down-steps between them, as in the definition of the edge weights of T̃ . Let
a denote the anchor vertex on the path from v to w. Furthermore, let s = (a, b)
be the first step of S that ends in a. Note that such a step has to exist, as a
either lies in T (C) or on the path from v to the root and all of these vertices
already have been visited by S if S sorts C. We now build a sequence SC′ , which
consists of three parts: We first take the box b from a to w, then sort C ′ starting
at w and finally bring b back from w to a. SC′ will contain exactly c(ṽC , ṽC′)
down-steps in the first part, then d(C ′) steps to sort C ′, and finally c(ṽC , ṽC′)
up-steps. We insert SC′ into S immediately after s, making sure that S now also
sorts C ′ and is still a valid sorting walk. After the traversal of all cycles in the
anchor tree, S will sort π and be of length d(π) + 2 · c(T̃). ut

Note that the sorting walk S constructed this way does not necessarily map
back to T̃ , but its corresponding cycle anchor tree has the same weight as T̃ .

10

4.3 Finding a Cheapest Cycle Anchor Tree

Let S∗ denote a shortest sorting walk for T and π. Using Theorem 3 to find
S∗ (or another equally long sorting walk), all we need is its corresponding cycle

anchor tree T̃ ∗. It suffices to find any cycle anchor tree with cost at most c(T̃ ∗).

Especially, it suffices to find a cheapest cycle anchor tree T̃min among all possible
cycle anchor trees. We then use Theorem 3 to get a sorting walk Smin from T̃min.
As c(T̃min) ≤ c(T̃ ∗) we get

|Smin| = d(π) + 2 · c(T̃min) ≤ d(π) + 2 · c(T̃ ∗) ≤ |S∗|

and therefore Smin is a shortest sorting walk. To find this cheapest cycle anchor
tree, we build the complete directed graph G̃ of potential anchor tree edges. Note
that the weights of these edges only depend on T and π but not on a sorting
walk.

Optimum Branching. Given this complete weighted directed graph G̃ we find
its minimum directed spanning tree rooted at r̃ using Edmond’s algorithm for
optimum branchings [3]. A great introduction to this algorithm, its correctness
proof by Karp [7] and its efficient implementation by Dijkstra [9] can be found
in the lecture notes of Zwick [11]. Combining these results with Theorem 3 will
now allow us to find shortest sorting walks in polynomial time.

Theorem 4 (Efficient solution). For any sorting problem on a tree T with
permutation π, we can find a minimum sorting walk in time O(n2).

Proof. We first extract all the cycles in linear time. We then precompute the
weights of all potential cycle anchor tree edges between any pair of cycles or
the root. For this we run breadth-first search (BFS)

∣∣C
∣∣+ 1 times, starting once

with r and once with T (C) for every C ∈ C and count the number of down-steps
along these BFS trees. We also precompute all the anchor points. As we run
O(n) many BFS traversals, this precomputation takes time O(n2).

As an efficient implementation of Edmond’s algorithm allows us to find T̃min

in time O(n2), we can find Smin in time O(n2) time overall.
In every step of the construction in Theorem 3, we can find step s in constant

time, if we keep track of the first step of S visiting each vertex of T . We build
S as a linked list of steps in time linear to its length. Thus, as on the path
(Theorem 1), we can construct Smin in time Θ(n+ |S|) from T̃min.

Combining these three steps gives an algorithm that runs in time O(n2). ut

5 Sorting on Other Graphs

Our algorithms for G being a path or a tree rely heavily on having unique paths
between any pair of vertices. Therefore, these algorithms cannot be applied to
graphs with cycles. In this section, we show that no efficient algorithm for general
graphs can be found unless P equals NP.

11

Theorem 5 (NP-completeness for planar graphs). Finding a shortest sort-
ing walk for a planar graph G = (V,E) and permutation π is NP-complete.

Proof. We use a reduction from the problem of finding Hamiltonian circuits in
grid graphs [6]. We replace each vertex of the grid by a pair of neighboring ver-
tices with swapped boxes. A formal proof is omitted due to the page limitation.

6 Conclusion

In this paper, we studied a sorting problem on graphs with the simple cost model
of counting the number of edges traveled. We presented an efficient algorithm
that finds an optimum solution if the graph is a tree, and showed that the
problem is hard on general graphs. All our results easily extend to weighted
graphs where each edge has an individual travel time. It is open whether there
are efficient algorithms for other special kinds of graphs or if there are good
approximation algorithms for general graphs.

We provide an implementation of the algorithm for finding shortest sorting
walks on paths and trees, as well as an interactive visualization on our website:
http://dgraf.ch/treesort

Acknowledgments. I want to thank Kateřina Böhmová and Peter Widmayer for
many interesting and helpful discussions as well as the anonymous reviewers for
their comments. I acknowledge the support of SNF project 200021L 156620.

References

1. Büsing, C., Maue, J.: Robust algorithms for sorting railway cars. In: Algorithms–
ESA 2010, pp. 350–361. Springer (2010)

2. Carlo, H.J., Vis, I.F., Roodbergen, K.J.: Storage yard operations in container ter-
minals: Literature overview, trends, and research directions. European Journal of
Operational Research 235(2), 412–430 (2014)

3. Edmonds, J.: Optimum branchings. Journal of Research of the National Bureau of
Standards B 71(4), 233–240 (1967)

4. Haddon, B.K.: Cycle-sort: a linear sorting method. The Computer Journal 33(4),
365–367 (1990)

5. Hearn, R.A.: The complexity of sliding block puzzles and plank puzzles. Tribute
to a Mathemagician pp. 173–183 (2005)

6. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs.
SIAM Journal on Computing 11(4), 676–686 (1982)

7. Karp, R.M.: A simple derivation of edmonds’ algorithm for optimum branchings.
Networks 1(3), 265–272 (1971)

8. Knuth, D.E.: The art of computer programming: sorting and searching, vol. 3.
Pearson Education (1998)

9. Tarjan, R.E.: Finding optimum branchings. Networks 7(1), 25–35 (1977)
10. Yamanaka, K., Demaine, E.D., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y.,

Saitoh, T., Suzuki, A., Uchizawa, K., Uno, T.: Swapping labeled tokens on graphs.
In: Fun with Algorithms. pp. 364–375. Springer (2014)

11. Zwick, U.: Directed minimum spanning trees. http://www.cs.tau.ac.il/~zwick/
grad-algo-13/directed-mst.pdf (April 2013)

12

